*Twitter started its service in 2006. It has been almost 14 years for it to appear in human’s daily life.
*Kwak, Lee, Park, and Moon (2010) has proposed a topological study about Twitter’s information sharing power by including data about user profiles,social relations,trending topics, etc. It is displayed as the first quantitative analysis on “Twittersphere.”
*Milgram (1967) :‘six degrees of separation’ theory
*The relationship between social network and language has been widely discussed in many studies as in Dieckhoff(2004), Jaspal (2010), Rampton(2017), and Harris (2006).
load("C:/Users/User/Desktop/修課/108-1/108-1R/W3twitter api_ass1/twitter_token.RData")
library(rvest)
## Loading required package: xml2
library(stringr)
library(data.table)
library(rtweet)
library(plyr)
library(stringr)
library(ggplot2)
table_df <- function(data_vector) {
# create the table, create the df and then order
df <- as.data.frame(table(data_vector), stringsAsFactors=F)
df <- df[order(df$Freq, decreasing = T), ]
# return as value the df
# just call the df or use return
return(df)
}
library(RColorBrewer)
library(wordcloud)
library(maps)
## Warning: package 'maps' was built under R version 3.6.3
##
## Attaching package: 'maps'
## The following object is masked from 'package:plyr':
##
## ozone
load("~/genrelocdf.RData")
library(ggplot2)
#theme_set(theme_bw())
library("sf")
## Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
library("rnaturalearth")
library("rnaturalearthdata")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(maps)
require(viridis)
## Loading required package: viridis
## Loading required package: viridisLite
#theme_set(theme_void())
#world <- ne_countries(scale = "medium", returnclass = "sf")
#class(world)
#map<-ggplot(data = world) +
# geom_sf() +
# xlab("Longitude") + ylab("Latitude") +
# ggtitle("World map", subtitle = paste0("(", length(unique(world$name_sort)), " countries)"))
#class(genrelocdf$lat)#character 所以在畫圖時要把他as.numeric
#map+geom_point(data =genrelocdf, aes(x = as.numeric(lon), y = as.numeric(lat),color=genre))
` # B. Best Music Tweets List Corpus: Musicians’ angle ## in degree out degree
roles <- c("questlove", "amazonmusic")
load("C:/Users/User/Desktop/修課/108-1/108-1R/w9 text minig/code/bm_tfidf_order.RData")
library(tidytext)
library(stringr)
inout_idf<-bm_tfidf_order %>% filter(screen_name %in% roles,!str_detect(word, "^@"),!str_detect(word,"^http"))
#View(inout_idf)
#inout_idf %>%
# arrange(desc(tf_idf)) %>%
# mutate(word = factor(word, levels = rev(unique(word)))) %>%
# group_by(screen_name) %>%
# top_n(15) %>%
# ungroup() %>%
# ggplot(aes(word, tf_idf, fill = screen_name)) +
# geom_col(show.legend = FALSE) +
# labs(x = NULL, y = "tf-idf") +
# facet_wrap(~screen_name, ncol = 2, scales = "free") +
# coord_flip()
roles <- c("freddurst","AudioPush")
cent_idf<-bm_tfidf_order %>% filter(screen_name %in% roles,!str_detect(word, "^@"),!str_detect(word,"^http"))
#cent_idf %>%
# arrange(desc(tf_idf)) %>%
# mutate(word = factor(word, levels = rev(unique(word)))) %>%
# group_by(screen_name) %>%
# top_n(15) %>%
# ungroup() %>%
# ggplot(aes(word, tf_idf, fill = screen_name)) +
# geom_col(show.legend = FALSE) +
# labs(x = NULL, y = "tf-idf") +
# facet_wrap(~screen_name, ncol = 2, scales = "free") +
# coord_flip()
roles <- c("pitchfork","diplo","QuincyDJones")
btw_idf<-bm_tfidf_order %>% filter(screen_name %in% roles,!str_detect(word, "^@"),!str_detect(word,"^http"))